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Higher-order transverse modes of ultrashort isodiffracting pulses
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We present a family of space-time nonseparable analytic solutions describing spatiotemporal dynamics of
isodiffracting single-cycle and few-cycle pulses with Hermite–Gaussian and Laguerre–Gaussian transverse
profiles. These solutions are space-time localized wave packets propagating in free space. The transverse field
profile acts as a spatially dependent filter, modifying the pulse spectrum and removing certain frequencies. The
consequences of those effects in the time domain are the distortions of pulse envelope and temporal wave form
and the creation of ‘‘dark pulses’’ at certain transverse positions. In addition, due to the space-time coupling,
the instantaneous transverse field pattern changes inside the pulse, as well as with propagation distance. These
higher-order mode solutions can be used to analyze reflected or scattered terahertz pulses, and to understand
the wave-form distortions of terahertz signals in applications. They are also capable of modeling pulsed fields
of phase locking of both transverse and longitudinal modes in total mode-locked lasers.
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I. INTRODUCTION

There is much current interest in the propagation
single-cycle and few-cycle ultrashort pulses in both the te
hertz and optical regimes. On the theoretical front, sev
authors have discussed the propagation of ultrashort pu
using techniques that go beyond the slowly varying envel
approximation@1–6#. A key feature of these solutions is th
the coupling between spatial and temporal variables lead
substantial pulse reshaping through diffraction even w
such pulses propagate in free space. To data, however,
of the studies of single-cycle pulse propagation have con
ered only the fundamental Gaussian transverse mode.
notable exception is the work of Heyman and Beracha@7# in
which a general exact solution is found for the higher-or
Hermite–Gaussian transverse modes of a class of pu
beams that have the property of being ‘‘isodiffracting,’’ i.e
all the frequency components in the pulse have the s
Rayleigh range. Heyman and Beracha’s focus in that pa
was on the use of these solutions as an expansion basi
synthesizing the transient radiation from well-collimated a
ertures. Thus the detailed physical properties of these s
tions for pulse spectra of interest in optics were not exa
ined. In this paper we provide a thorough analysis of pul
beams of higher-order transverse modes using spectra
are typically observed in terahertz experiments. These s
tions are also relevant to recent experiments on the t
mode locking of longitudinal and higher-order transve
modes in laser cavities@8,9#. In the terahertz regime, th
advanced technology permits a measurement of the ele
field of the terahertz pulse in both space and time@10#. This
opens up the possibility of detection and experimental inv
tigation of the transverse dynamic structure of ultrash
pulses in the single-cycle regime. An understanding of th
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higher-order single-cycle pulses helps one to analyze
understand temporal wave-form distortions of terahe
pulses upon reflection or scattering in many applicatio
such as T-ray imaging@11–13# and THz impulse ranging
studies@14#.

When the pulse width approaches the peak frequency,
effects of space-time coupling become significant. Spa
time separable solutions cannot give a complete picture
the spatiotemporal dynamics of ultrashort pulses. In t
work, we will present a family of space-time nonsepara
exact solutions of the paraxial wave equation. These s
tions contain single or few oscillations and are space-ti
localized wave packets with Hermite–Gaussian
Laguerre–Gaussian transverse profiles. The space-time
pling is an effect associated with the ultrawide bandwid
and the frequency-dependent spatial mode structure. It
be understood from modal structure dispersion: a spa
variation of the spatial mode structure with frequency. U
like a monochromatic wave or a narrow-band pulse which
dominated by the characteristics of the carrier frequency
single-cycle pulse contains contributions from all the fr
quency components within the full width at half maximu
~FWHM! bandwidth. Hence the spatial variation of the sp
tial mode structure with frequencies leads to a space-t
coupling in the time domain. As a result of the space-tim
coupling, we find that the instantaneous transverse profil
a pulse is a function of both the local time within the pul
and the propagation distance~or equivalently, the global
time!. In addition, whereas for monochromatic beams
electric field is strictly zero for all time at the nulls of th
Hermite or Laguerre polynomials, the ‘‘nulls’’ of the pulse
beam have the nature of dark pulses or dark-ring pulse
temporal hole in the bright background of the pulse en
lope. We also find that the space-time coupling results
significant pulse reshaping and a strong dependence o
temporal pulse profiles on transverse coordinates.

II. DERIVATION OF HIGHER-ORDER ISODIFFRACTING
PULSE SOLUTIONS

As an extension of our previous work@5#, we start with
the paraxial wave equation for the electric field:
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F¹'
2 12ik

]

]zGŨ~r ,v!50, ~2.1!

where ¹'
2 operates on the transverse coordinates ank

5v/c. To form our particular pulsed beam solution, we u
the broadband spectrum:

S̃~v!5~vt0!s exp~2vt0!, ~v>0!, ~2.2!

where s>1 and t0.0 are real parameters related to t
bandwidth and the peak frequency (vp5s/t0) of the pulse.
This set of spectra not only gives a closed-form analy
expression for the pulse temporal profile, but also descr
quite well the spectra of single-cycle pulses in terahertz
periments@15–17#.

The well-known Hermite–Gaussian beam solution of E
~2.1! is given by@18#

H̃mn~r !5
Hm~j!Hn~h!

A11z2/zR
2

expF ikr2

2R~z!
2

r2

w2~z!
2 iGmn~z!G ,

~2.3!

whereHm(•) andHn(•) are Hermite polynomials of orderm
and n. The arguments of the Hermite polynomials are n
malized transverse coordinates:

j5&
x

w~z!
, h5&

y

w~z!
. ~2.4!

The beam sizew(z) and the radius of curvature of the wav
front R(z) are given by

w~z!5AlzR

p S 11
z2

zR
2 D , R~z!5z1

zR

z
, ~2.5!

wherezR is the Rayleigh range of the beam. The Gouy sh
Gmn(z) in Eq. ~2.3! is given by

Gmn~z!5~m1n11!arctanS z

zR
D . ~2.6!

Note that we have neglected an unimportant constant in f
of the expression Eq.~2.3!, so H̃mn(r ) is dimensionless.
Multiplying Eq. ~2.3! by the spectrum~2.2!, we obtain

Ũmn~r ,v!5
Hm~j!Hn~h!

A11z2/zR
2 ~vt0!s

3expF2vt01
ikr2

2R~z!
2

r2

w2~z!
2 iGmn~z!G .

~2.7!

We are particularly interested in isodiffracting pulses, d
fined as pulses whose frequency components all have
same Rayleigh range@19#. This would be the case, for ex
ample, in an ideal mode-locked laser. By matching the c
vature of wave fronts at the end mirrors of the cavity, all t
frequency components inside the cavity are forced to h
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the same Rayleigh range which is determined by the ca
geometry. The Rayleigh rangezR in Eq. ~2.7! is thus inde-
pendent of frequency.

The time domain expression of the Hermite–Gauss
pulses can be obtained by taking the analytic inverse Fou
transform of Eq.~2.7! with respect to the local timet8[t
2z/c. The analytic inverse Fourier transform is defined
@20#

Ua~ t !5
1

p E
0

`

Ũ~v!exp~2 ivt !, Im t<0, ~2.8!

whereŨ(v) is the spectrum of a real signal corresponding
the real part of the analytic signalUa(t). After the integra-
tion, we find that the space-time evolution of the isodiffra
ing Hermite–Gaussian pulses can be described by the c
pact expression:

Umn~r ,T!5
Hmn~jT ,hT!

A11z2/zR
2

exp@2 iGmn~z!#

~11 iT !s11bs11~r !
. ~2.9!

Herem andn are, respectively,x- andy-direction mode in-
dices. The dimensionless local timeT(r ,t) is given by

T~r ,t !5

t2
1

c H z1
r2

2R~z!J
t0b~r !

, ~2.10!

wherer25x21y2. The quantityb(r ) is a transverse scaling
parameter which scales the pulse width and bandwidth
axis @5#. It is given by

b~r !511
r2

a2~z!
, ~2.11!

wherea(z) is the transverse radius of the pulse. It has
same functional form as a monochromatic Gaussian bea

a~z!5a0A11S z

zR
D 2

, ~2.12!

wherea0 is the radius of the pulse at the focus and is rela
to the pulse width and the Rayleigh range througha0

5A2ct0zR. The functionHmn(•,•) in Eq. ~2.9! is a modi-
fied two-dimensional~2D! coupled Hermite polynomial,
given by

Hmn~x,y!5 (
k50

@m/2#

(
l 50

@n/2#

~21!k11

3
m!n!G@s1~m1n!/22k2 l 11#

k! ~m22k!! l ! ~n22l !!G~s11!

3~2x!m22k~2y!n22l , ~2.13!

where the gamma functionG@s1(m1n)/22k2 l 11#
comes from the spectral integration of the 2D uncoup
Hermite polynomials@Hm(x)Hn(y)#. The gamma function
G(s11) normalizes the fundamental Gaussian transve
2-2
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HIGHER-ORDER TRANSVERSE MODES OF ULTRASHORT . . . PHYSICAL REVIEW E 63 046602
modeH00(x,y)[1. The argumentsjT and hT in Eq. ~2.9!
are normalized time-coupled transverse spatial coordina

jT5A 2

b~r !~11 iT ! F x

a~z!G ,
~2.14!

hT5A 2

b~r !~11 iT ! F y

a~z!G .
Again, in Eq.~2.9! we neglected the unimportant constant
front of the expression to make it dimensionless for con
nience. For certain values ofm, n, ands, Eq. ~2.9! becomes a
multiple-valued function. In that case we only consider t
principal value.

One unique feature of the isodiffracting Hermite
Gaussian pulses is that along hyperbolic trajectories of
Gaussian beam, their temporal and frequency informat
such that the pulse shape~except for the Gouy shift!, the
spectrum, and the number of oscillations in the tempo
wave form, remain invariant. This feature will be transpar
if one replacesx and y by the relative coordinatesu
([x/a(z)) and v([y/a(z)) in Eqs. ~2.9!–~2.14!. Thus for
any pair of fixed (u,v), except for the Gouy shift and th
amplitude decay, the Hermite–Gaussian pulses are inva
along the trajectories:

x5ua0Aa1
z2

zR
2, y5va0A11

z2

zR
2. ~2.15!

For systems with cylindrical symmetry, the eigenmod
are Laguerre–Gaussian:

L̃pl~r !}
w0

w~z!
j u i uLp

l ~j2!expF ik
r2

2R~z!
2

r2

w2~z!G
3exp~ i l f2 iGpl!, ~2.16!

wherer25x21y2 andf is the azimuthal angle. Herep and
l are transverse mode indices in the radial and azimu
directions. The beam sizew(z) and radius of curvatureR(z)
are given by Eq.~2.5!. The Gouy shiftGpl(z) is given by

Gpl~z!5~2p1u l u11!arctanS z

zR
D . ~2.17!

The functionLp
l (•) in Eq. ~2.16! is the Laguerre polynomia

with an argument which is a square of the normalized tra
verse radiusj[&r/w(z). Following the same procedure
one obtains the Laguerre–Gaussian single-cycle pulses:

Upl~r ,T!5
jT

u l uLp
l ~jT

2!

A11z2/zR
2

exp@ i l f2 iGpl~z!#

~11 iT !s11bs11~r !
, ~2.18!

where the definitions ofT and b(r ) are the same as Eqs
~2.10! and ~2.11!, respectively. The functionLp

l (•) in Eq.
~2.18! is a modified Laguerre polynomial given by
04660
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l ~x!5 (

k50

p

~21!kS p1u l u
p2k D G~s1k1u l u/211!

G~s11!

xk

k!
,

~2.19!

where the gamma functionG(s1k1u l u/211) comes from
the spectral integration of the Laguerre polynomial. T
gamma function G(s11) normalizes the fundamenta
Gaussian transverse modeL0

0(x)[1. The argumentjT in Eq.
~2.18! is a time-coupled normalized transverse radius defi
by

jT[A 2

b~r !~11 iT !

r

a~z!
. ~2.20!

The unimportant constant coefficient in front of Eq.~2.18! is
neglected and the functionUpl(r ,T) is dimensionless.

Equations~2.9! and ~2.18! represent a family of single
cycle or few-cycle isodiffracting pulses of higher-ord
transverse modes without the slowly varying envelope
proximation. They describe space-time localized wave pa
ets propagating in free space. Notice that in Eqs.~2.9! and
~2.18! the space and time variables are nonseparable. Su
coupling between space and time introduces some un
features which cannot be predicted from any space-t
separable solutions or from monochromatic waves.

III. PHYSICAL PROPERTIES

In this section we will discuss general properties of the
pulses. The particular form of the spectra does not affect
general properties significantly. What matters is the fact t
the bandwidth and peak frequency of the pulse are com
rable. In what follows we first clarify some of the quantitie
that characterize the pulse.

A. Field quantities

From Eqs.~2.9! and~2.18!, the analytic field is a complex
number which can always be written as a magnitude mu
plied by an exponential phase. To simplify the expressi
we rewrite them as

Ui j ~r ,T!5Ai j ~r ,T!exp@2 ic i j ~r ,T!2 iGi j ~z!#, ~3.1!

where ij representsmn for Hermite–Gaussian andpl for
Laguerre–Gaussian.Ai j (r ,T)>0 is the magnitude and
c i j (r ,T) is the phase of the field excluding the Gouy pha
The total phase is

C i j ~r ,T!52c i j ~r ,T!2Gi j ~z!. ~3.2!

The physical instantaneous electric field is given by the r
part of Eq.~3.1!:

Ei j ~r ,T!5Ai j ~r ,T!cos@c i j ~r ,T!1Gi j ~z!#. ~3.3!

In the figures that follow, we will plot some of the following
quantities:
2-3
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FIG. 1. Top row: spatiotemporal evolution o
the electric field of a H03 single-cycle pulse. The
pulse propagates from a plane (z522zR) before
the focus, at the focus (z50), and to a plane (z
52zR) after the focus. Center row: snapshots
the same field distribution in the planex50 at
the corresponding propagation distances. Bott
row: time-integrated pulse intensity~energy den-
sity! at the corresponding planes.
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field Ei j (r ,T),
intensity @Ei j (r ,T)#2,

time-integrated intensity E
2`

1`

@Eij~r ,T!#2dt,

phase of the field C i j (r ,T),
ampltude of the field Ai j (r ,T),
squared ampltude of the field @Ai j (r ,T)#2.

Note that the time-integrated intensity is proportional to e
ergy distribution in the transverse plane.

B. Spatiotemporal evolution

The transverse profiles of the pulses given by Eqs.~2.9!
and ~2.18! are on the average similar to the correspond
monochromatic higher-order modes. There are, howeve
number of distinct features of these pulses that arise a
result of the space-time coupling implicit in Eqs.~2.14! and
~2.20! and the frequency-dependency of transverse m
profiles.

To visualize these pulses we begin by plotting in Fig
the spatiotemporal profile of the H03 pulse at three differen
04660
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propagation distances. The planez50 represents the foca
plane where the waist of the pulsed beam is located~at t
50). The pulse converges towards this plane forz,0 and
diverges towards infinity forz.0. The field along the
y-direction exhibits oscillations as expected for the high
order mode. The second row in the figure represents a la
plot of the same field distribution where the bright regio
have positive field strength and the dark regions are nega
While the top two rows in Fig. 1 show the instantaneo
electric field, what is usually measured for optical frequen
fields is the time-integrated intensity or the energy dens
distribution in a transverse plane. The bottom row in Fig
shows the corresponding energy density. The transverse
ergy distribution of the pulsed beam H03 looks very much
like that of the corresponding monochromatic beam, cons
ing of four bright spots along they-direction with three dark
regions or nulls in between. Upon closer inspection, ho
ever, it becomes clear that the minima of the pulsed be
contain finite energy whereas the minima of the monoch
matic beam are strictly zero. Figure 2~a! shows the
transverse-dependence of the energy density at the focu
the pulsed beam along the linex50 while Fig. 2~b! shows a
in

y-
he
FIG. 2. y-dependence of the energy density
the focal plane along the linex50. ~a! for the H03

pulse,a0 is the pulsed beam size at the focus.~b!
For the monochromatic beam of the same Ra
leigh range with the frequency at the peak of t
pulse spectrum.w0 is the beam waist of the
monochromatic Gaussian beam.
2-4
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FIG. 3. Amplitude of the field in the planex
50 at distances before the focusz522zR , at
the focusz50, and after the focusz52zR . The
top row is H03 mode while the bottom row is H04

mode. Except for the dark line on axis, the da
spots are the amplitude holes where the phase
the field is singular.
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similar plot for a monochromatic beam of the same Rayle
range whose frequency lies at the peak of the pulse spect
Except for diffraction, this transverse distribution is invaria
during propagation. While the minima of the cw beam~the
dark spots! have strictly zero energy, the minima of th
pulsed beam contain as much as 40% of the energy a
maxima. Thus a certain amount of light is coupled into t
center of the dark spots from the adjacent bright spots.

The reason for the finite energy at the nulls of the puls
beams is the frequency-dependence of the zeroes of the
mite polynomials. From the frequency domain representa
in Eq. ~2.7!, it is seen that the pulsed H03 beam is made up o
a distribution of different frequencies. Suppose a root of
function H3(h) is at h[&y/w(z)5h1 . Sincew is a func-
tion of frequency, the location of the root alongy will also
depend on frequency. Thus in any transverse plane the r
of different frequency components do not necessarily ove
and hence the Fourier integral need not yield a zero at
minima of the transverse field distribution. We note that
odd modes symmetry requires the presence of a null ax
50 or y50. This null is independent of frequency and hen
the field on axis for the odd modes is strictly zero even
the pulsed beam.

Figures 3 compares the space-time amplitude distribu
of the H03 and H04 pulsed beams in thex50 plane at three
propagation distances: before the focus (z522zR), at the
focus (z50), and after the focus (z52zR). Here the dark
regions have low field amplitude. The curvature of the spa
time patterns followsT(r ,t)50 contour plots at the respec
tive locations. Note that the H04, an even mode, has a brigh
spot on axis.

C. Phase singularities

The concept of phase singularities in wave fronts was fi
introduced by Nye and Berry@21#. Phase singularities ar
04660
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spatial points where the amplitude of the electric field is z
and hence the phase of the field is indeterminate. Associ
with the amplitude holes in Fig. 3 are phase singulariti
Figure 4 shows the contour plot of the phase of the field
the H04 pulse in the planex50 at the timet50 ~at the
focus!. At the positions of the four dark spots correspondi
to those in the bottom plots of Fig. 3, the phase can be
value ~singular!. The thick curves in Fig. 4 represent th
singular curves along which the amplitude of the field is ze
and the phase is indeterminate~any value!. The phase singu-
lar curves are associated with the complex roots whose
parts equal the values ofy on the singular curves.

FIG. 4. Contour plot of the phase of the field in the planex
50 at the timet50 ~at the focus! for the H04 pulse. At the dark
spots~amplitude holes! corresponding to those in the bottom plo
of Figs. 3 are the phase singularities. The thick curves represen
phase singular curves along which the phase is indeterminate.
2-5
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FIG. 5. Amplitudes~dashed lines! and electric
fields ~solid lines! of the H04 pulse on axis (v
50.00) and along two hyperbolic trajectorie
through the center of the two dark spots (v
50.22 and 0.70!. The corresponding real posi
tions are given iny. A temporal hole appears in
the center of the amplitudes at the positions of t
nulls, resulting in dark pulses. The electric field
of the dark pulses have dramatic distortion.
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In the single-cycle regime the phase singularity can
directly reflected in the temporal profile of the pulse.
should be possible to observe wave-form distortion due
the phase singularity in phase sensitive experiments suc
terahertz imaging and impulse scattering. They are recog
able features in the temporal wave forms of single-cy
pulses and could be used as indications of certain prope
of targets@21#. Analysis of the temporal profiles of single
cycle pulses in the presence of the phase singularities is h
ful to understand some general features in the wave-f
distortions of terahertz signals in applications.

D. Dark pulses

As already noted, the electric field does not necessa
vanish for all time at the ‘‘nulls’’ of the pulsed beams. Th
pulse shapes measured at these ‘‘nulls’’ have the natur
dark pulses, with a temporal hole in the bright background
the amplitude of the field. Figure 5 shows the amplitud
~dashed lines! and electric fields~solid lines! of the H04 pulse
on axis (v50.00) and along two hyperbolic trajectorie
through the centers of the two dark spots (v50.22 and 0.70!.
A temporal hole appears in the center of the amplitude at
positions of the two nulls. The depth of the hole depends
the distance to the center of the dark spot. The existenc
the temporal hole can be seen in the space-time couplin
Eqs. ~2.13! and ~2.14!. Corresponding to each real roo
(j1 ,h1) of the functionHmn(•,•), there are real solution
(x,y,z)’s only whenT(r ,t)50, and no real solution when
T(r ,t)Þ0. This causes the temporal hole to appear in
center@T(r ,t)50# of the amplitude. The amplitude hole an
phase singularity cause a dramatic distortion in the elec
fields of the dark pulses as shown by the solid lines in plo

The temporal hole is due to zero-crossing dispersion
Hermite polynomials. The peak of the amplitude is located
the space-time position where all the frequencies are
04660
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phase. Depending on the transverse position, the freque
components of the pulse are either in phase orp out of
phase. The frequency-dependent zeroes of the Hermite p
nomials introducep-phase shifts between frequencies a
hence bring down the peak of the amplitude, resulting in
dark spots in Fig. 3. At the centers of the dark spots
temporal hole dips down to zero since almost half freque
components are out of phase with the other half.

E. Spectrum reshaping

Equation~2.7! implies that the Hermite polynomial act
as a spatially dependent filter which modifies the spectrum
the fundamental pulse, removes certain frequencies at
nulls of the Hermite polynomial, and introduces ap-phase
shift between frequency components. These filter effects
demonstrated in Fig. 6 which shows the amplitude spectr
x50 and several relative coordinatesv([y/a(z)) for the
H04 pulse. The spectra are invariant along the hyperbolic r
of the Gaussian beam. The zeroes in the off-axis spectrav
Þ0) are located at the zeroes of the Hermite polynom
taken as a function of frequency. There is ap-phase shift
between the frequency components on the left and righ
the zero transmission point. The dashed vertical line ma
the position of the central frequency which is defined as
center of gravity of the spectrum:

vc[
*0

`vuẼ~v!u2dv

*0
`uẼ~v!u2dv

. ~3.4!

In the plots at the two dark spots (v50.22 and 0.70!, the
removed frequency is very close to the central frequen
Thus almost half of the frequency components arep out of
phase with the other half, resulting in the deepest hole~zero!
in the peak of the amplitude. The zero transmission poin
2-6
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FIG. 6. Filter effect of the transverse profil
which modifies the spectrum and removes cert
frequencies, plotted for the spectra of the H04

pulse at thex50 along several hyperbolic rays o
the Gaussian beams given byv. The dashed ver-
tical line in each plot indicates the position of th
carrier frequency.
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the plots shifts to the red end of the spectrum as one mo
outwards crossing each root of the Hermite polynomial d
to the larger beam size of the lower frequency.

F. Dynamics of electric fields

Another effect of the space-time coupling is the tim
dependence of the transverse pattern of the electric field.
transverse pattern is a function of both local time and pro
gation distancez ~or equivalently global time!. The evolution
of the electric field of a H12 pulse on transverse planes
04660
es
e

-
he
-

shown in Fig. 7. The plots in the same row represent the fi
at different local times but the same distance, while the p
in the same column show the field at different distances
the same local time. Along the rows, one observes the in
dynamic structure of the pulse, i.e., snap shots inside
pulse at the same distance. Along the columns, one obse
the propagation dynamics at the same position relative to
pulse center. Since the temporal and transverse coordin
are coupled, the field transverse pattern changes with b
local and global times. Figure 8 shows the transverse
terns of the field of aL0

3 pulse at the corresponding planes
s-

ld
tion

ld
me
re
FIG. 7. Spatiotemporal dynamics of tran
verse patterns of the electric field of a H12 pulse.
The plots in the same row show the electric fie
in the transverse planes at the same propaga
distance~global time!, but different relative posi-
tions ~represented bydt) to the pulse center. The
plots in the same column show the electric fie
at different propagation distances, but the sa
relative position. The transverse coordinates a
normalized by the beam size (a0) at the focus.
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FIG. 8. Spatiotemporal dy-
namics of transverse patterns o
the electric field of aL0

3 pulse at
the corresponding planes in Fig. 7

FIG. 9. Mode transformation
between Hermite–Gaussian an
Laguerre–Gaussian single-cyc
pulses. With a proper phase rela
tionship, three Hermite–Gaussia
pulses (H20, H11, and H02) are
converted into a Laguerre–
Gaussian pulse (L0

2). The electric
fields are plotted in the transvers
planes through the pulse centert
5z/c) at several propagation dis
tances.
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Fig. 7. The rotation is due to the azimuthal dependence of
phase of the field in the Laguerre–Gaussian transverse
file.

G. Mode transformation

The transformation between monochromatic Hermit
and Laguerre–Gaussian modes@22# also holds for the pulsed
beams. This can be shown by multiplying the original tra
formation formula by the pulse spectrum and taking an a
lytic inverse Fourier transform. A transformation of thre
Hermite–Gaussian pulses of H20, H11, and H02 into a
Laguerre–Gaussian pulse ofL0

2 is shown in Fig. 9 for severa
propagation distances. The fields are plotted in the transv
planes through the pulse center (t5z/c) for all the distances.

IV. SUMMARY

We have presented a family of space-time nonsepar
solutions of isodiffracting single-cycle and few-cycle puls
of higher-order transverse modes. The space-time couplin
J

J

t.

04660
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se
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is

a consequence of the modal structure dispersion. Simila
the group velocity dispersion which causes a temporal wa
form distortion, the modal structure dispersion results in
temporal distortion as well. Due to the space-time coupli
a certain amount of light is coupled into the dark regions
the transverse profiles, resulting in dark pulses, and the tr
verse pattern of the field changes upon propagation. Ow
to the isodiffracting nature, these solutions can be used
study the pulsed fields of phase locking of both transve
and longitudinal modes in total mode-locked lasers. Sin
Hermite–Gaussian and Laguerre–Gaussian beams
complete sets of basis functions for any two-dimentio
space, the pulses presented here can be used to analy
flected and scattered terahertz signals.
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