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Higher-order transverse modes of ultrashort isodiffracting pulses
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We present a family of space-time nonseparable analytic solutions describing spatiotemporal dynamics of
isodiffracting single-cycle and few-cycle pulses with Hermite—Gaussian and Laguerre—Gaussian transverse
profiles. These solutions are space-time localized wave packets propagating in free space. The transverse field
profile acts as a spatially dependent filter, modifying the pulse spectrum and removing certain frequencies. The
consequences of those effects in the time domain are the distortions of pulse envelope and temporal wave form
and the creation of “dark pulses” at certain transverse positions. In addition, due to the space-time coupling,
the instantaneous transverse field pattern changes inside the pulse, as well as with propagation distance. These
higher-order mode solutions can be used to analyze reflected or scattered terahertz pulses, and to understand
the wave-form distortions of terahertz signals in applications. They are also capable of modeling pulsed fields
of phase locking of both transverse and longitudinal modes in total mode-locked lasers.
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[. INTRODUCTION higher-order single-cycle pulses helps one to analyze and
understand temporal Wave—form_ dis_tortions of t_erahertz

There is much current interest in the propagation ofPulses upon reflection or scattering in many applications,
single-cycle and few-cycle ultrashort pulses in both the terasuch as T-ray imaging11-13 and THz impulse ranging
hertz and optical regimes. On the theoretical front, severa?tu\‘/j\;ﬁs[mr]]’ | idth hes th K h
authors have discussed the propagation of ultrashort pulse? en the pulse width approaches the peak frequency, the

. . . eifects of space-time coupling become significant. Space-
using techniques that go beyond the slowly varying envelop?i

S . . me separable solutions cannot give a complete picture of
approximatior{1-6]. A key feature of these solutions is that yhe spatiotemporal dynamics of ultrashort pulses. In this

the coupling between spatial and temporal variables leads igork, we will present a family of space-time nonseparable
substantial pulse reshaping through diffraction even wherxact solutions of the paraxial wave equation. These solu-
such pulses propagate in free space. To data, however, magins contain single or few oscillations and are space-time
of the studies of single-cycle pulse propagation have considecalized wave packets with Hermite—Gaussian or
ered only the fundamental Gaussian transverse mode. On@guerre—Gaussian transverse profiles. The space-time cou-
notable exception is the work of Heyman and BergdHan pling is an effect associated with the ultrawide bandwidth
which a general exact solution is found for the higher-ordend the frequency-dependent spatial mode structure. It can
Hermite—Gaussian transverse modes of a class of pulsdif understood from modal structure dispersion: a spatial
beams that have the property of being “isodiffracting,” i.e., variation of the spa_tlal mode structure with frequency._ Un_-
all the frequency components in the pulse have the samI ea monochromatic wave ora narrow-banq pulse which is
Rayleigh range. Heyman and Beracha’s focus in that pap ominated by the characteristics of the carrier frequency, a
was on the use of these solutions as an expansion basis fglrngle—cycle pulse contains contr|but.|ons from all th_e fre-
synthesizing the transient radiation from well-collimated ap_quency components within the full width at half maximum

ertures. Thus the detailed physical properties of these solyf"WHM) bandwidth. Hence the spatial variation of the spa-

tions for pulse spectra of interest in optics were not exam:“al mode structure with frequencies leads to a space-time

ined. In this paper we provide a thorough analysis of pulse&OUpI!ng in th? time dome_lin. As a result of the space—t.ime

beams of higher-order transverse modes using spectra th%(?Upl'ng.’ we find .that the Instantaneous transverse profile of

are typically observed in terahertz experiments. These solif? pulse is a funct|9n of .both the Ioca] time within the pulse
nd the propagation distander equivalently, the global

tions are also relevant to recent experiments on the totd}

mode locking of longitudinal and higher-order transverseiMe): In addition, whereas for monochromatic beams the

modes in laser cavitief8,9]. In the terahertz regime, the electric field is strictly zero for all time at the nulls of the
advanced technology permits a measurement of the eIectrEerm'te or Laguerre polynomials, the “nulls” of _the pulsed.
field of the terahertz pulse in both space and t[h@. This eam have thg nature ‘.Jf dark pulses or dark-ring pulses: a
opens up the possibility of detection and experimental investempo\;\?| hc;le '? t(?ehbrlgnt background of th? pulse (ainvg-
tigation of the transverse dynamic structure of ultrashorOP€: We also find that the space-time coupling results in

pulses in the single-cycle regime. An understanding of thesg/dnificant pulse reshaping and a strong dependence of the
temporal pulse profiles on transverse coordinates.

II. DERIVATION OF HIGHER-ORDER ISODIFFRACTING

. ] . .
Present address: Lucent Technologies, Bell Labs Innovatloqs, PULSE SOLUTIONS
101 Crawfords Corner Road, Holmdel, NJ 07733-3030. Electronic
address: sfeng@engin.umich.edu As an extension of our previous wofk], we start with
"Electronic address: winful@eecs.umich.edu the paraxial wave equation for the electric field:
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- the same Rayleigh range which is determined by the cavity
U(r,w)=0, (2.)  geometry. The Rayleigh rangg in Eq. (2.7) is thus inde-
pendent of frequency.

where V2 operates on the transverse coordinates and  'he time domain expression of the Hermite—Gaussian
— w/c. To form our particular pulsed beam solution, we usePulses can be obtained by taking the analytic inverse Fourier

v2+2'k‘9
L Io"z

the broadband spectrum: transform of Eq.(2.7) with respect to the local timé' =t
—z/c. The analytic inverse Fourier transform is defined by
Yw)=(wm0) exp —wro), (0=0), 2.2 [20]
where _s>1 and 7,>0 are real parameters related to the Ua(t)=ifm0(w)exp(—iwt), Imt<0, (2.8
bandwidth and the peak frequency {=s/7) of the pulse. ™

This set of spectra not only gives a closed-form analytic 5
expression for the pulse temporal profile, but also describewhereU (w) is the spectrum of a real signal corresponding to
quite well the spectra of single-cycle pulses in terahertz exthe real part of the analytic signbl,(t). After the integra-

perimentg 15-17. tion, we find that the space-time evolution of the isodiffract-
The well-known Hermite—Gaussian beam solution of Eqg.ing Hermite—Gaussian pulses can be described by the com-
(2.1) is given by[18] pact expression:
~ Hn(&Hu(7) ikpz p2 . . Hon(ér.m1)  exd —iGmn(2)]
Hmn(r)_ \/1+22/22R X ZR(Z)_WZ(Z)_Igmn(Z) ’ Umn(raT)_ \/1+22/Z§ (1+i-|—)s+lﬁs+1(r)- (29)
(2.3

Herem andn are, respectivelyx- andy-direction mode in-
whereH (-) andH,(-) are Hermite polynomials of orden  dices. The dimensionless local tiri¢r,t) is given by
andn. The arguments of the Hermite polynomials are nor-

malized transverse coordinates: 1[ p? ]
t——{z+——
X T(r,t)= ¢ 2R(@) (2.10
y )= , .
= — f— — r
I3 VZW(Z), 7 Viw(z). (2.9 ToB(r)

, . wherep?=x?+y?. The quantity3(r) is a transverse scaling
The beam sizev(z) and the radius of curvature of the wave narameter which scales the pulse width and bandwidth off
front R(z) are given by axis[5]. It is given by

_ \zr z° R p?
w(z)=\/—— 1+Z—2R, Riz)=z+—, (29 ,B(r):1+m, (2.11

wherezg is the Rayleigh range of the beam. The Gouy shiftwherea(z) is the transverse radius of the pulse. It has the
Gmn(2) in EqQ. (2.3 is given by same functional form as a monochromatic Gaussian beam:

2

. (2.6 a(zy=apg\/1+ , (2.12

Gnn(2)=(Mm+n+ 1)arcta76i
ZR

Note that we have neglected an unimportant constant in fronvherea,, is the radius of the pulse at the focus and is related
of the expression Eq(2.3), so Hy(r) is dimensionless. to the pulse width and the Rayleigh range through

Multiplying Eq. (2.3) by the spectrun{2.2), we obtain = y2c7oZg. The functionHy,(-,-) in Eq. (2.9 is a modi-
fied two-dimensional(2D) coupled Hermite polynomial,
~ Hm(§)Hn(7) given by
Unn(r,o)=

S
V1+72°124 (w7o) [mi2] [n/2]
Henn(X.Y) = go ;0 (—1)k*t

xr{ Jrikp2 v iGmn(2)
exp — gt == —5——1Gn(2)|.
2R(z) w(2) MmN T[s+ (m+n)/2—k—1+1]
(2.7) XK m— 2K (n—2D1T(s+ 1)
We are patrticularly interested in isodiffracting pulses, de- X (2x)™2k(2y)n—2!, (2.13

fined as pulses whose frequency components all have the

same Rayleigh rangel9]. This would be the case, for ex- where the gamma function[s+(m-+n)/2—k—1+1]
ample, in an ideal mode-locked laser. By matching the cureomes from the spectral integration of the 2D uncoupled
vature of wave fronts at the end mirrors of the cavity, all theHermite polynomiald H,(X)H,(y)]. The gamma function
frequency components inside the cavity are forced to havé'(s+1) normalizes the fundamental Gaussian transverse
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mode Hyo(Xx,y)=1. The argumentg; and »t in Eq. (2.9 | p ’
are normalized time-coupled transverse spatial coordinates: Ep(X)ZkZ,O (=1) (

p+|l|> I(s+k+|1|/2+1) x¥

p—k [(s+1) k!
2.1
o 2T « (2.19
TNBNH(A+iT) |az)]’ where the gamma functioR (s+k+|I|/2+1) comes from
(2.14  the spectral integration of the Laguerre polynomial. The
2 y gamma function I'(s+1) normalizes the fundamental
nr= B(N(1+iT) |az)| Gaussian transverse moﬂ%(x)zl. The argumenéy in Eq.

(2.18 is a time-coupled normalized transverse radius defined

Again, in Eq.(2.9) we neglected the unimportant constant in by

front of the expression to make it dimensionless for conve-

nience. For certain values of, n, ands, Eq.(2.9) becomes a o= / 2 p (2.20
multiple-valued function. In that case we only consider the T NBr)(1+iT) a(z) " ’
principal value.

One unique feature of the isodiffracting Hermite— The unimportant constant coefficient in front of £g.18 is
Gaussian pulses is that along hyperbolic trajectories of th@eglected and the functidd,(r, T) is dimensionless.
Gaussian beam, their temporal and frequency information, Equations(2.9) and (2.18 represent a family of single-
such that the pulse shagexcept for the Gouy shift the  cycle or few-cycle isodiffracting pulses of higher-order
spectrum, and the number of oscillations in the temporatransverse modes without the slowly varying envelope ap-
wave form, remain invariant. This feature will be transparentproximation. They describe space-time localized wave pack-
if one replacesx and y by the relative coordinatesi  ets propagating in free space. Notice that in E8s9) and
(=xl/a(z)) andv(=y/a(z)) in Egs.(2.9—(2.14. Thus for  (2.18 the space and time variables are nonseparable. Such a
any pair of fixed (,v), except for the Gouy shift and the coupling between space and time introduces some unique
amplitude decay, the Hermite—Gaussian pulses are invariaféatures which cannot be predicted from any space-time
along the trajectories: separable solutions or from monochromatic waves.

2 2
4 4

X=Uag /a+ = y=va, ll-l— = (2.19 Ill. PHYSICAL PROPERTIES
R R

In this section we will discuss general properties of these
Spulses. The particular form of the spectra does not affect the
general properties significantly. What matters is the fact that
the bandwidth and peak frequency of the pulse are compa-
rable. In what follows we first clarify some of the quantities

For systems with cylindrical symmetry, the eigenmode
are Laguerre—Gaussian:

2 2
~ Wo P P :
2 il g2 L that characterize the pulse.
Lol Gy & Lol € )exr{lkZR(z) WA(2)
Xexplil ¢—iGp), (2.16 A. Field quantities

s o . _ From Eqgs.(2.9) and(2.18), the analytic field is a complex
wherep“=x“+y* and ¢ is the azimuthal angle. Heggand  number which can always be written as a magnitude multi-

| are transverse mode indices in the radial and azimuthglied by an exponential phase. To simplify the expression,
directions. The beam sizg(z) and radius of curvaturB(z) we rewrite them as

are given by Eq(2.5). The Gouy shiftg,(z) is given by
Ui (r, T)=A(r, Tyexd —i;(r, T)=iG(2)], (3.1

z
gp|(z)=(2p+|l|+1)arcta762—R : (217 whereij representsmn for Hermite—Gaussian angl for
Laguerre—GaussianA;j(r,T)=0 is the magnitude and

co ey . : #i;(r,T) is the phase of the field excluding the Gouy phase.
The functionL ;(-) in Eq.(2.16 is the Laguerre polynomial The total phase is

with an argument which is a square of the normalized trans-
verse radiusé=v2p/w(z). Following the same procedure,

one obtains the Laguerre—Gaussian single-cycle pulses: Wi (r, )= =y (r, T) = Gj(2). 3.2

W ol g2 o The physical instantaneous electric field is given by the real
§TLp(67) exlil o= iGy(2)] part of Eq.(3.2):

Tz arme g (418

Up|(r,T):

Eij(r,T)=A;j(r,T)cog ¢;;(r, T)+G;(2)]. (3.3
where the definitions off and B(r) are the same as Eqgs.
(2.10 and (2.12), respectively. The functiom'p(-) in Eq.  In the figures that follow, we will plot some of the following
(2.18 is a modified Laguerre polynomial given by quantities:
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z=—2zR z=02 z2=22

FIG. 1. Top row: spatiotemporal evolution of
the electric field of a g single-cycle pulse. The
pulse propagates from a plane<{—2zg) before
the focus, at the focuszE0), and to a planez
=2zg) after the focus. Center row: snapshots of
the same field distribution in the plane=0 at
the corresponding propagation distances. Bottom
row: time-integrated pulse intensifgnergy den-
sity) at the corresponding planes.

-10 0 10 -10 ©0 10 -10 O 10
X (mm) x (mm) x (mm)
field Ei(r,T), propagation distances. The plane 0 represents the focal
intensity [Eij(r,T)]Z, plane where the waist of the pulsed beam is locdtd
oo =0). The pulse converges towards this planeZer0 and

time-integrated intensity [Eij(r,T)]zdt, diverges towards infinity forz>0. The field along the

) - y-direction exhibits oscillations as expected for the higher-
phase of the field Wi (r,T), order mode. The second row in the figure represents a lateral
ampltude of the field A (r,T), plot of the same field distribution where the bright regions
squared ampltude of the field LA (r,T]% have positive field strength and the dark regions are negative.
Note that the time-integrated intensity is proportional to en-/Vhile the top two rows in Fig. 1 show the instantaneous
ergy distribution in the transverse plane. electric field, what is usually measured for optical frequency

fields is the time-integrated intensity or the energy density
distribution in a transverse plane. The bottom row in Fig. 1
shows the corresponding energy density. The transverse en-
The transverse profiles of the pulses given by EQ®)  ergy distribution of the pulsed beamyfHooks very much
and (2.18 are on the average similar to the correspondindike that of the corresponding monochromatic beam, consist-
monochromatic higher-order modes. There are, however, g of four bright spots along thg-direction with three dark
number of distinct features of these pulses that arise as regions or nulls in between. Upon closer inspection, how-
result of the space-time coupling implicit in Eq2.14) and  ever, it becomes clear that the minima of the pulsed beam
(2.20 and the frequency-dependency of transverse modeontain finite energy whereas the minima of the monochro-
profiles. matic beam are strictly zero. Figure(a2 shows the
To visualize these pulses we begin by plotting in Fig. 1ltransverse-dependence of the energy density at the focus of
the spatiotemporal profile of thegklpulse at three different the pulsed beam along the lime=0 while Fig. 2b) shows a

B. Spatiotemporal evolution

(a) Pulse (b) CW beam

1 1
> > FIG. 2. y-dependence of the energy density in
@ 08 2 0.8 the focal plane along the line=0. (a) for the Hy;
Bos Sos pulse,a, is the pulsed beam size at the foc(s.
= 3 For the monochromatic beam of the same Ray-
§ 0.4 § 0.4 leigh range with the frequency at the peak of the
S, (TIPS pulse spectrumw, is the beam waist of the

’ monochromatic Gaussian beam.

0 0
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z=-22R z=02R z=22R

y (mm)
y (mm)
y (mm)

FIG. 3. Amplitude of the field in the plarne
=0 at distances before the focus- —2zg, at
the focusz=0, and after the focug=2zg. The
top row is Hjz mode while the bottom row is ¢4
mode. Except for the dark line on axis, the dark
spots are the amplitude holes where the phase of
the field is singular.

y (mm)
y (mm)

-1 0
z - ct (mm) z - ct (mm) z - ct (mm)

similar plot for a monochromatic beam of the same Rayleighspatial points where the amplitude of the electric field is zero
range whose frequency lies at the peak of the pulse spectrurand hence the phase of the field is indeterminate. Associated
Except for diffraction, this transverse distribution is invariantwith the amplitude holes in Fig. 3 are phase singularities.
during propagation. While the minima of the cw bedine  Figure 4 shows the contour plot of the phase of the field of
dark spot$ have strictly zero energy, the minima of the the H,, pulse in the planex=0 at the timet=0 (at the
pulsed beam contain as much as 40% of the energy at thgcus. At the positions of the four dark spots corresponding
maxima. Thus a certain amount of light is coupled into theto those in the bottom plots of Fig. 3, the phase can be any
center of the dark spots from the adjacent bright spots.  yajue (singula). The thick curves in Fig. 4 represent the
The reason for the finite energy at the nulls of the pulsedingylar curves along which the amplitude of the field is zero

beams is the frequency-dependence of the zeroes of the Hefp the phase is indeterminatny valug. The phase singu-
mite polynomials. From the frequency domain representationy ¢ rves are associated with the complex roots whose real

in Eq.(2.7), it is seen that the pulsedyklbeam is made up of :

a distribution of different frequencies. Suppose a root of theDarts equal the values gfon the singular curves.
function H(7) is at =v2y/w(z) = ;. Sincew is a func- phase contour at the focus (t = 0)
tion of frequency, the location of the root aloggwill also 8
depend on frequency. Thus in any transverse plane the roots
of different frequency components do not necessarily overlap 6.
and hence the Fourier integral need not yield a zero at the
minima of the transverse field distribution. We note that for
odd modes symmetry requires the presence of a nud at
=0 ory=0. This null is independent of frequency and hence
the field on axis for the odd modes is strictly zero even for
the pulsed beam.

Figures 3 compares the space-time amplitude distribution
of the Hy; and Hy, pulsed beams in the=0 plane at three
propagation distances: before the focus-(2zg), at the 3
focus =0), and after the focuszE& 2zg). Here the dark i
regions have low field amplitude. The curvature of the space- |

0

4F

y (mm)

time patterns followsT(r,t)=0 contour plots at the respec- 1
tive locations. Note that thedg an even mode, has a bright z - ct{mm)
spot on axis.

FIG. 4. Contour plot of the phase of the field in the plane
=0 at the timet=0 (at the focug for the Hy, pulse. At the dark
spots(amplitude holescorresponding to those in the bottom plots
The concept of phase singularities in wave fronts was firstf Figs. 3 are the phase singularities. The thick curves represent the
introduced by Nye and Berrj21]. Phase singularities are phase singular curves along which the phase is indeterminate.

C. Phase singularities
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z=—22R z=OzR

v=0.70,y=3.8mm
W

3t gt T

1}

i

FIG. 5. Amplitudegdashed linesand electric
fields (solid lines of the Hy, pulse on axis
=0.00) and along two hyperbolic trajectories
through the center of the two dark spots (
=0.22 and 0.7D The corresponding real posi-
tions are given irny. A temporal hole appears in
the center of the amplitudes at the positions of the
nulls, resulting in dark pulses. The electric fields
of the dark pulses have dramatic distortion.

- — - Envelope

Field;

-5 0 5
t - z/c (ps) t - z/c (ps) t - z/c (ps)

In the single-cycle regime the phase singularity can behase. Depending on the transverse position, the frequency
directly reflected in the temporal profile of the pulse. It components of the pulse are either in phasemoout of
should be possible to observe wave-form distortion due tghase. The frequency-dependent zeroes of the Hermite poly-
the phase singularity in phase sensitive experiments such a®mials introducem-phase shifts between frequencies and
terahertz imaging and impulse scattering. They are recognizience bring down the peak of the amplitude, resulting in the
able features in the temporal wave forms of single-cycledark spots in Fig. 3. At the centers of the dark spots the
pulses and could be used as indications of certain propertigemporal hole dips down to zero since almost half frequency
of targets[21]. Analysis of the temporal profiles of single- components are out of phase with the other half.
cycle pulses in the presence of the phase singularities is help-
ful to understand some general features in the wave-form E. Spectrum reshaping

distortions of terahertz signals in applications. . o . .
9 PP Equation(2.7) implies that the Hermite polynomial acts

as a spatially dependent filter which modifies the spectrum of
the fundamental pulse, removes certain frequencies at the
As already noted, the electric field does not necessarilywlls of the Hermite polynomial, and introducesmaphase
vanish for all time at the “nulls” of the pulsed beams. The shift between frequency components. These filter effects are
pulse shapes measured at these “nulls” have the nature afemonstrated in Fig. 6 which shows the amplitude spectra at
dark pulses, with a temporal hole in the bright background ok=0 and several relative coordinate$=y/a(z)) for the
the amplitude of the field. Figure 5 shows the amplitudesH, pulse. The spectra are invariant along the hyperbolic rays
(dashed lingsand electric field$solid lineg of the Hy, pulse  of the Gaussian beam. The zeroes in the off-axis spestra (
on axis @ =0.00) and along two hyperbolic trajectories #0) are located at the zeroes of the Hermite polynomial
through the centers of the two dark spats<0.22 and 0.70  taken as a function of frequency. There isrgphase shift
A temporal hole appears in the center of the amplitude at theetween the frequency components on the left and right of
positions of the two nulls. The depth of the hole depends orthe zero transmission point. The dashed vertical line marks
the distance to the center of the dark spot. The existence ahe position of the central frequency which is defined as the
the temporal hole can be seen in the space-time coupling icenter of gravity of the spectrum:
Egs. (2.13 and (2.14). Corresponding to each real root

D. Dark pulses

(&1,my) of the function™,,.(-,-), there are real solutions f§w|~E(w)|2da)
(x,y,2)’s only whenT(r,t)=0, and no real solution when W= o (3.4
T(r,t)#0. This causes the temporal hole to appear in the JolE(w)|[“dw

center{ T(r,t) =0] of the amplitude. The amplitude hole and

phase singularity cause a dramatic distortion in the electrién the plots at the two dark spot® €0.22 and 0.70 the

fields of the dark pulses as shown by the solid lines in plotstemoved frequency is very close to the central frequency.
The temporal hole is due to zero-crossing dispersion offhus almost half of the frequency components areut of

Hermite polynomials. The peak of the amplitude is located aphase with the other half, resulting in the deepest (deo

the space-time position where all the frequencies are ifn the peak of the amplitude. The zero transmission point in
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v=0.00 v=0.18 v=022
1 1 Uye
os8f |1 0.8} J1 o8t
E I IS 1 £ \
Sosff 1 5061 So06
o4l , Do.4ff 204
1] 7] \ 2]
o2ff ! 0.2 02 _ _
: : : FIG. 6. Filter effect of the transverse profile
% 1 > % 1 > % 1 2 which modifies the spectrum and removes certain
frequency (THz) frequency (THz) frequency (THz) frequencies, plotted for the spectra of the,H
pulse at thex=0 along several hyperbolic rays of
v=0.50 v=0.70 v=1.00 the Gaussian beams given by The dashed ver-
1 ™ ! tical line in each plot indicates the position of the
08} |1 o8| I\ 08} i carrier frequency.
£ 1 £ 1 = 1
So06f [1 306 Sosfl |1
o4t |, D04 o4} |,
7] 1 ) w '
ozt] | 0.2 o2y,
o1 0 ottt
0 1 2 0 1 2 0 1 2
frequency (THz) frequency (THz) frequency (THz)

the plots shifts to the red end of the spectrum as one moveshown in Fig. 7. The plots in the same row represent the field
outwards crossing each root of the Hermite polynomial dueat different local times but the same distance, while the plots
to the larger beam size of the lower frequency. in the same column show the field at different distances but
the same local time. Along the rows, one observes the inner
dynamic structure of the pulse, i.e., snap shots inside the
pulse at the same distance. Along the columns, one observes
Another effect of the space-time coupling is the time-the propagation dynamics at the same position relative to the
dependence of the transverse pattern of the electric field. Thaulse center. Since the temporal and transverse coordinates
transverse pattern is a function of both local time and propaare coupled, the field transverse pattern changes with both
gation distance (or equivalently global time The evolution local and global times. Figure 8 shows the transverse pat-
of the electric field of a ki, pulse on transverse planes is terns of the field of 4 3 pulse at the corresponding planes in

F. Dynamics of electric fields

z= —2zH, &t = 0.5’:0 z= —2zR, ot = 0.0':0 z= -ZZR, 8t= —0.51:0

x/a
2=02z, 8t =051, z2=0z,, 5,(0 =00, FIG. 7. Spatiotemporal_ dynamics of trans-
verse patterns of the electric field of gjpulse.
The plots in the same row show the electric field
in the transverse planes at the same propagation
distance(global time, but different relative posi-
tions (represented byt) to the pulse center. The

plots in the same column show the electric field

y/ao

-1

2 2 at different propagation distances, but the same
-2 0 2 -2 0 2 relative position. The transverse coordinates are
x/a x/a x/a . .
0 0 0 normalized by the beam siza{) at the focus.
z=27,, St= 0.51, z=2z, St= 0.0t z=2z, St= -0.51,

046602-7



SIMIN FENG AND HERBERT G. WINFUL

z=-22z ,5t=0.5‘t

z2=0z ,8t=0.51:

Z% 2ZR’ 5t = 0.51:O

zZ=-2z ,5t=00t

H

-2 0 2
Xa,
z=0z - S8t= 0.01.'

2= —2zR, &t= --0.5’:0
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FIG. 8. Spatiotemporal dy-
namics of transverse patterns of
the electric field of a3 pulse at
the corresponding planes in Fig. 7.

FIG. 9. Mode transformation
between Hermite—Gaussian and
Laguerre—Gaussian single-cycle
pulses. With a proper phase rela-
tionship, three Hermite—Gaussian
pulses (Hq, Hi;, and Hy) are
converted into a Laguerre—
Gaussian puIseL@). The electric
fields are plotted in the transverse
planes through the pulse center (
=z/c) at several propagation dis-
tances.
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Fig. 7. The rotation is due to the azimuthal dependence of tha consequence of the modal structure dispersion. Similar to
phase of the field in the Laguerre—Gaussian transverse prthe group velocity dispersion which causes a temporal wave-
file. form distortion, the modal structure dispersion results in the
temporal distortion as well. Due to the space-time coupling,
G. Mode transformation a certain amount of light is coupled into the dark regions of

the transverse profiles, resulting in dark pulses, and the trans-

grl]_e transforcr;nanor_] betwgée;] r?onﬁclr:jrorfnat;ﬁ HeTm'(tje_verse pattern of the field changes upon propagation. Owing
and Laguerre—t>aussian mo also nolds for the pulsed o isodiffracting nature, these solutions can be used to

beams. This can be shown by multiplying the original trans'study the pulsed fields of phase locking of both transverse

for_mgﬂon formula_by the pulse spectrum and tgkmg an anag, 4 longitudinal modes in total mode-locked lasers. Since
lytic inverse Fourier transform. A transformation of three

Hermite—G . | f H d int Hermite—Gaussian and Laguerre—Gaussian beams form
ermite-Gaussian pulses of,41 Hyy, and H, into a complete sets of basis functions for any two-dimentional

Laguerre—Gaussian pulselc§ is shown in Fig. 9 for several gnaco “the pulses presented here can be used to analyze re-
propagation distances. The fields are plotted in the transversg,ted and scattered terahertz signals.

planes through the pulse centér=(z/c) for all the distances.
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